Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection.

نویسندگان

  • Bo Duan
  • Jiajing Zhou
  • Zheng Fang
  • Chenxu Wang
  • Xiujuan Wang
  • Harold F Hemond
  • Mary B Chan-Park
  • Hongwei Duan
چکیده

We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest viaπ-π interaction. In particular, the molecule harvesting capability of the tGO nanospacer and the stealth properties of PEG coating on the plasmonic nanoparticles collectively lead to preferential positioning of selective targets such as aromatic molecules and single-stranded DNA at the SERS-active nanogap hotspots. We have demonstrated that an SERS assay based on the PEGylated trilayered substrate, in combination with magnetic separation, allows for sensitive, multiplexed "signal-off" detection of DNA sequences of bacterial pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Hybrids of Vertical Graphene-nanosheet Sandwiched by Ag-nanoparticles for Enhanced Surface Selectively Catalytic Reactions

Three dimensional (3D) plasmonic nanostructure is perfect for the surface-enhanced Raman scattering (SERS) and also very suitable for surface catalytic reaction, but how to design and fabricate is still a robust task. Here, we show a 3D plasmonic nanohybrid of vertical graphene-nanosheet sandwiched by Ag-nanoparticles on the silicon nanocone array substrate for enhanced surface catalytic reacti...

متن کامل

Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.

Although it is now well recognized that plasmonic gold/silver nanoparticle based aggregates having electromagnetic hot spots are responsible for high sensitivity in surface-enhanced Raman spectroscopy (SERS), the high yield and reproducible production of such nanostructures are challenging and limit their practical application. Here we show a graphene oxide (GO) based approach in generating sta...

متن کامل

Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates.

Graphene, which has a linear electronic band structure, is widely considered as a semimetal. In the present study, we combine graphene with conventional metallic surface-enhanced Raman scattering (SERS) substrates to achieve higher sensitivity of SERS detection. We synthesize high-quality, single-layer graphene sheets by chemical vapor deposition (CVD) and transfer them from copper foils to gol...

متن کامل

Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal FilmMetal Nanoparticle Coupling System

An electromagnetic “hot spot” is a point with a strongly enhanced local fi eld which occurs near sharp asperities and also forms at the small gaps (nanometer or smaller) between metal nanostructures such as nanoparticles (NPs), NP-fi lm system, and. [ 1–12 ] In nanoparticle-fi lm-gap (NFG) system, metal NPs (supported localized surface plasmons LSPs) are separated from a bulk metal fi lm (suppo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 29  شماره 

صفحات  -

تاریخ انتشار 2015